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Abstract

A new approximating formula for the Arrhenius integral has been proposed using the Pattern Search Method, which is both reliable and accurate.
Compared with several published Arrhenius integral approximations, the newly proposed formula is superior to the others and is an ideal solution
for the estimation of kinetic parameters from nonisothermal thermogravimetric analysis data.
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1. Introduction

The simplest experiment to determine the kinetics of a ther-
mal decomposition is thermogravimetry under nonisothermal
conditions. Since there are many inherent advantages, integral
methods have been widely used to determine kinetic parame-
ters from nonisothermal thermogravimetric analysis data [1].
Unfortunately, integral methods involve the integration of the
Arrhenius function, so called ‘Arrhenius integral’, which has
no exact analytical solution. A large number of approximate
solutions for the Arrhenius integral, with varying complexity
and precision, have been published [2]. However, many of these
approximations are gross or even inaccurate and do not allow
proper values for the kinetic parameters to be obtained [3]. In
this work, a new Arrhenius integral approximate formula is
obtained using the Pattern Search Method. It will be shown that
the new approximation is reliable and accurate as a solution for
the Arrhenius integral.
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2. Theory

The differential form of the nonisothermal rate of a solid
reaction can be generally described by,
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Upon integration, Eq. (1) gives,
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The integral of the right hand side of Eq. (2) is called the
Arrhenius integral. If E/RT is replace by ‘x’ and the integration
limits are transformed, the above equation becomes,
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This is written as,

AE
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where p(x) is the exponential integral.
The p(x) function has no exact analytical solution and it is
usually expressed as follows [4]:
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Fig. 1. The numerical results of i(x) at various x.

where h(x) is a function which changes slowly with x and is
close to unity.
From Egs. (3) to (5), one obtains

x2 00 o—X
h(x) = — —-dx 6
()= — / > ©)
The h(x) function has no exact analytical solution, but it can be
solved by using numerical techniques. For this purpose, either
general purposed mathematical software or a computer program
developed in any programming language is used. In this study,
the numerical calculations are performed by using the Mathe-
matica software system [5]. Fig. 1 shows the numerical results
of h(x) at various x.

Table 1
Expressions of some approximations for the Arrhenius integral

In this study, the following rational formula is used to approx-
imate the /(x) function:

x+alnx+b
h = 7
100 x+clnx+d 7

where a, b, ¢ and d are indeterminant parameters.

Most solid-state reactions take place in the range of
5 <x < 100. To determine the values of a, b, ¢ and d, the follow-
ing objective function is established:

100
OF. = / [h(x) — hi(x)]* dx )
5

Those values which minimize the objective function are the
expected values. It is difficult to get information about con-
cerning gradient or higher derivations of the objective function.
Therefore, the optimization algorithm should be derivative-free,
robust with respect to local optima. For this purpose, we propose
the use of the Pattern Search Method, which is a derivative-free,
direct search method and is superior to other direct search meth-
ods such as the Powell Method and Simplex Method in both
robustness and number of function evaluations [6]. For more
details of the Pattern Search Method, readers are referred to lit-
erature [7].

In order to perform the numerical calculations required by the
minimization of the objective function, the ‘Pattern Search Tool’
in the ‘Genetic Algorithm and Direct Search Toolbox’ of the
MATLAB software system has been employed [8]. The values
of those parameters are established: a=0.25403, b=0.36665,
¢=0.24598 and d=2.41457. Then, the new exponential integral
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Table 2

Relative errors of some Arrhenius integral approximations in percent

X Coats—Redfern Gorbachev-Lee-Beck Li Agrawal Quanyin—-Su Zsako Wanjun et al. Junmeng et al. New approximation
5 —1.8858E+01 —3.4025E+00 6.7656E+00 1.4273E+00 —5.6143E—-01 2.0017E—01 —1.7727E+00 1.8218E—01 1.4827E—03
10 —5.1758E+00 —1.2248E+00 8.7680E—01 —1.8507E—01 —6.0358E—01 —1.1497E—01 —3.4284E—01 —4.7663E—02 —2.4357E—-04
15 —2.3955E+00 —6.2890E—01 2.7860E—01 —1.7722E-01 —3.5838E—01 —2.0139E-01 —6.3049E—-02 —2.9961E—-02 3.3156E—04
20 —1.3787E+00 —3.8253E—01 1.2314E-01 —1.3033E-01 —2.3137E-01 —1.8488E—01 9.8349E—-03 —1.2219E-02 2.5837E—04
25 —8.9552E—01 —2.5717E—01 6.5106E—02 —9.6289E—-02 —1.6070E—01 —1.5224E—01 2.5751E-02 —1.4517E-03 5.4371E—05
30 —6.2836E—01 —1.8474E—01 3.8563E—02 —7.3212E—-02 —1.1785E—01 —1.2309E-01 2.2883E—02 4.8464E—03 —1.1300E—04
35 —4.6520E—01 —1.3913E-01 2.4715E—02 —5.7273E-02 —9.0030E—-02 —1.0006E—01 1.3542E—-02 8.5453E—03 —2.1605E—04
40 —3.5828E—01 —1.0855E—01 1.6786E—02 —4.5921E—-02 —7.0981E—-02 —8.2324E—-02 2.2520E—03 1.0717E—02 —2.6339E—-04
45 —2.8441E—01 —8.7053E—-02 1.1920E—02 —3.7591E—-02 —5.7382E—-02 —6.8634E—-02 —9.2069E—03 1.1969E—-02 —2.6957E—04
50 —2.3125E-01 —7.1367E—-02 8.7680E—03 —3.1316E—-02 —4.7340E—-02 —5.7952E—-02 —2.0133E—-02 1.2652E—02 —2.4738E—-04
55 —1.9172E-01 —5.9570E—-02 6.6373E—03 —2.6478E—-02 —3.9717E-02 —4.9506E—02 —3.0276E—-02 1.2976E—02 —2.0650E—04
60 —1.6153E—01 —5.0475E—-02 5.1451E—-03 —2.2673E—-02 —3.3796E—-02 —4.2736E—-02 —3.9578E—02 1.3070E—02 —1.5390E—04
65 —1.3795E—01 —4.3315E-02 4.0689E—03 —1.9629E—-02 —2.9105E—-02 —3.7238E—-02 —4.8067E—02 1.3016E—-02 —9.4444E—-05
70 —1.1918E—01 —3.7578E—02 3.2733E-03 —1.7156E—02 —2.5326E—-02 —3.2720E—-02 —5.5803E—-02 1.2868E—02 —3.1486E—05
75 —1.0400E—01 —3.2909E—-02 2.6724E—-03 —1.5122E-02 —2.2238E—-02 —2.8967E—-02 —6.2856E—-02 1.2658E—02 3.2682E—05
80 —9.1542E—-02 —2.9060E—02 2.2101E-03 —1.3428E—02 —1.9681E—02 —2.5816E—02 —6.9298E—02 1.2411E-02 9.6517E—05
85 —8.1198E—-02 —2.5849E—-02 1.8486E—03 —1.2002E—-02 —1.7541E-02 —2.3149E—-02 —7.5193E—-02 1.2141E-02 1.5900E—04
90 —7.2513E—-02 —2.3142E-02 1.5618E—03 —1.0792E—-02 —1.5732E—-02 —2.0870E—02 —8.0602E—02 1.1860E—02 2.1947E—04
95 —6.5151E—-02 —2.0839E—-02 1.3314E-03 —9.7552E—-03 —1.4189E—-02 —1.8910E—-02 —8.5578E—02 1.1575E—-02 2.7753E—04
100 —5.8856E—02 —1.8864E—-02 1.1443E—-03 —8.8609E—03 —1.2862E—02 —1.7212E-02 —9.0166E—02 1.1290E—-02 3.3294E—-04
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approximation is given below:
() = Sy = €%+ 0.25403 Inx + 036665
P = I = T 1 0.24598 Inx + 2.41457

From Egs. (2) to (4) and (9), the corresponding approximation
for the Arrhenius integral is obtained:

T
/ ef(E/RT) dT
0
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_ RT? E+0.25403RT In(E/RT) + 0.36665RT o—(E/RT)
~ E E+0.24598RT In(E/RT) + 2.41457RT

(10)

Substituting Eq. (10) to Eq. (2), rearranging Eq. (2) and log-
arithm on both sides of Eq. (2), one gets the equation for the
evaluation of nonisothermal kinetic parameters:

g(a) E 4+ 0.24598RT In(E/RT) + 2.41457RT
T2 E +0.25403RT In(E/RT) + 0.36665RT

AR E

3. Results and discussion

The objective of this analysis is to evaluate the accuracy of
the newly proposed Arrhenius integral approximation. For this
purpose, several approximate formulas for the Arrhenius integral
are introduced for comparison and listed in Table 1. The p(x)
approximations are also shown in Table 1.

Since p(x) is the variable-transformed expression of the
Arrhenius integral, the accuracy evaluation of the Arrhenius inte-
gral approximation is identical to that of the corresponding p(x)
approximation. The relative percent deviations associated with
the use of the above p(x) approximations for a physical realistic
domain of x are shown in Table 2. The ‘exact’ values of p(x)
used for relative percent error calculations are obtained by dou-
ble precision numerical integration using Simpson’s 1/3 rule as
coded for Mathematica.

As shown in Table 2, the newly proposed approximation for
the Arrhenius integral is significantly more accurate than other
approximate formulas in the range of 5 <x <100. The abso-
lute value of relative deviation from the ‘exact’ value for the
Arrhenius integral to the new approximate formula is less than
1.4827 x 1073%. Furthermore, the newly proposed approxima-
tion is obtained directly from numerical results for the Arrhe-
nius integral without derivation from any approximating infinite
series, therefore it is reliable.

4. Conclusions

(1) By using the Pattern Search Method, a new approximation
for the Arrhenius integral has been proposed, which is both
reliable and accurate.

(2) Compared with several other published Arrhenius inte-
gral approximations, the newly proposed approximate for-
mula is significantly more accurate than other approxima-
tions and is an ideal solution for the evaluation of kinetic
parameters from nonisothermal thermogravimetric analysis
data.

(3) The corresponding equation for the evaluation of the kinetic
parameters is also presented, which can be put in the
form:

g(@) E + 0.24598RT In(E/RT) + 2.41457RT
T2 E + 0.25403RT In(E/RT) + 0.36665RT

AR E
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